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1. Dr.V.Maheswari - Average Total and Average Connected Domination on
Anti Fuzzy Graph

Proceedings of ICAMMCT-2021

Average Total and Average Connected Domination on Anti Fuzzy Graph

V. Maheswari!, U. Syedul Fahima?

S ch Scholar, Reg No: 20112012092003, Assistant Professor’
m College for Women, Thoothukudi-628002, Affiliated to Manonmaniam
University, Abishekapatti, Tirunelveli-627012, TamilNadu, India
“Corresponding Author mail address: ‘mahiraj2005@amail.com,

*fahimaumarali@gmail.com

Abstract

In this paper, we define the concept of average total and average connected domination
on anti fuzzy graph. Also, we find the average total domination number and average connected
domination number for some standard anti fuzzy graphs and obtain its related results on them.

Keywords

Anti Fuzzy graph, Domination, Average Domination, Total Domination, Connected
Domination.

AMS Subject Classification: 05C72
1. Introduction

In 1975, Fuzzy graphs were introduced by A Rosenfeld. In 2016, Anti Fuzzy graph was
introduced by R.Seethalakshmi and R B.Gnanajothi[7]. Further, R.Muthuraj and
A Sasirekha[5] developed the anti fuzzy graph theory and also introduced the domination on
anti fuzzy graph[6]. The concept of average domination was introduced by Henning[ 1]. In this
paper, we introduce the average total and average connected domination on anti fuzzy graph.
Some theorems are discussed and obtained some of its related results.

2. Preliminaries
Definition 2.1[5]

A pair of functions o:V —[0,1] and p: V X V —=[0, 1] with u(a, 4) = o(a)V () for
all @, & in V is called an anti fuzzy graph where V is a finite non empty set and V denote
maximum. It is denoted by A.

Definition 2.2[5]

If the underlying graph 4" is complete and u(a, &) = o(a) V o (&) for every (a, &) in
E then the anti fuzzy graph <4 1is called the complete anti fuzzy graph.
Definition 2.3

Every vertices and edges in an anti fuzzy graph A have same membership value then
<A is called uninodal anti fuzzy graph.

Definition 2.4[6]

If for every vertex & € V(A)\ D then there exists @ in D such that a is a strong
neighborhood of & otherwise 1t dominates itself. Then the set D € V(A) 15 said to be a

Department of Mathematics. AMET Deemed (o be University, Chennai. 110
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2. Dr. V. Maheswari - Ascending Domination Decomposition of a Triangular
Snake

Proceedings, Second International Conference on Applied Mathematics and Intellectual Property Rights,
A.P.C.Mahalaxmi College for Women, Thoothukudi, 09 &0 March 2021 21

Ascending Domination Decomposition of Triangular Snake

'Brishni. V, ?Maheswari. V

'Research Scholar (Reg. No: 19222012092002)

2Assistant Proff
12pG and Research Department of Mathemalicsmollege for Women
Thoothukudi, Tamilnadu, .

Affiliated to Manonmaniam Sundaranar University, Abishekapatti, Tirunelveli — 627012,TN,India

Abstract

K.Lakshmiprabha and K.Nagarajan introduced Ascending Domination
Decomposition of Graphs[4]. M.Bhuvaneshwari, SelvamAvadayappan and P.Chandra Devi
were introduced Ascending Domination Decomposition of some Graphs[5].An ADD of a
graph G is a collection ¥ = {G;, G, ... G} of subgraphs of G such that each G; is connected ,
every edge of G is in exactly one G; and y(Gy) =i, 1 <i < n.Triangular Snake is obtained
from the path by replacing every edge by a triangle C3.In this paper, We proved the
Triangular snake Tp admits ADD into n —parts iffp=n(n+1)orp= n?.

Keywords: Domination, Decomposition and Ascending Domination Decomposition.
AMS Subject Classification: 05C69and 05C70.

Introduction
Let G = (V,E)be a simple connected graph. K.Lakshmiprabha and

n introduced Ascending Domination Decomposition of Graphs[4].

K.Nagaraja
M.Bhuvaneshwari, SelvamAvadayappan andP.Chandra Devi extended the concept of
hs[5]. In this paper, We proved the

Ascending Domination Decomposition to some Grap
Triangular snake Tp admits ADD into n —parts iff p = n(n+ orp = n?.

1.Preliminaries

Definition 1.1.
If G;,Go,G3,..-,Gn are connected edge disjoint subgraphs of Gwith E(G) =
E(Gy) U E(G3) V E(Gs3) ...V E(Gp), then (G4, G, G, ..., Gy)is said to be decomposition

of G.
Definition 1.2.

A subset S of vertices in a graph G is called a Dominating set if every vertex v € V

is either in S or adjacent to some vertex in S.

The least cardinality of a dominating set in Gis called the domination number of G

and is usually denoted by y(G).

Definition 1.3.
An ADD of a graph G is a collection ¥ = {G;, G, ... G,,} of subgraphs of G such that

i
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3. Dr. V. Mahalakshmi - Normalisation of Q-Fuzzy X-Subalgebras in Near

Subtraction Semi groups

proceedings. Second International Conference on Applied Mathematics and Intellectual Property Rights

4.P.C. Mahalaxmi C ollege for Women, Thoothukudi, 09 &10 March 2021 85

NORMALISATION OF Q-FUZZY X- SUBALGEBRAS IN NEAR-
SUBTRACTION SEMIGROUPS

‘V.Mah|alakshmi, 2K.Mumtha, 3S. Hari Nachiyar
. Assistant Professor of Mathematics
Research Scholar, Reg No: 20112012092002
3M.Sc Student

"_i College for Women, Thoothukudi.
Affliated to M aranar University, Tirunelveli, Tamilnadu, India.

Imahalakshmi@apcmcollege.ac.in, 2;namthakasi8696@gmail.com,
3harishnarayanan99(@gmail.com

Abstract:

The concept of normal fuzzy X-subalgebras in near-subtraction semigroups has been
already examined in our previous paper. As a continution to it, we, in this paper the concept
of normalization of Q-fuzzy X-subalgebras in near-subtraction semigroups. We also try to
explore some of its properties.

Key Words:
Q-fuzzy set, Fuzzy X-subalgebras, Normal.

Introduction

In 2007, Dheena et al. introduced the concept of Near-Subtraction Semigroups. In

1965, fuzzy set Was first introduced by L.A.Zadeh . The notion of near-subtraction semigroup
was ;mdied by B M.Schein. K.H.Kim et al. & they established the concept of fuzzy set. In

_subgroups in near-rings. In
i lysed the theory of normal fuzzy R-su
Bk s ussed the concept of normal fuzzy X-subalgebras

i K. Mumtha et.al., disC ) eas
oo i e K‘gr:)upsln this paper, W€ introduce the new concept of normal Q-fuzzy

in near-subtraction semt . Fits results
: - some of 1ts results.
X-subalgebras in near-subtraction semigroups and charactenze s

Preliliminaries
" ' S " "__“‘r ““‘ :. l‘.
Deﬁm“;"' 2hlt subtraction semigroup X is a non-empty set with & - satisfies
right near-
. (X,—)isa subtraction algebra
(ii). (X, -) is a semigroup

— psime. ST
(iii). Forallp,q.7 € X (p— @-7=P' q

(right distributive law)

Definition: 2.2

If p.0 =0.p= 0, for
Now after, X stands for 2 7e10
least two elements.
Definition: 2.3 .

A fuzzy subset 1S
Definition: 2.4

A fuzzy subset #
u(x — y) = min{u(x):#

¢ and 18 denoted by Xo-

:un;».s'_vnum'lri ;
X, =) with at

traction semigroup (

all PE X, then Xis a

ic ri »ar-sub
_symmetric right near-st

from the non-cmpty set X into the unit interval [0,1]-
i To
the mappIng H

fXis called 2 Sfuzzy Subalgebra ¢
o

(y)},Vx.y €X.

o X if
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4. Dr.V.Maheswari & Dr. K. Bala Deepa Arasi - Edge Domination on Anti
Fuzzy Graphs

Prow o cddimes, Sevemd International ¢ erenece oy

S Maduthavni Colleye fo P Applicd Mathe matie s and e llec tid Property Righis

Weine
r Wamen, Hmuﬂmlluh‘ 09 & 11 Magee by 20y '”

LDCGE DOMINATION ONANTIFUZZY GRAPI

Vo Maheswari', 1), Syedul Fahima, K. Bala Decpn Arasi®

‘Researcly Sc.lml;u,kcg No: 20012012002001

) [RRTTT A SR .
! w .ri'lnll'tll Department of Mathematics,
i Ollege for Women, Thoothukudi- 628002
. Allliated o May Sundiranar University, Abishekapatti, Tirunelveli-627012

TamilNadu, India

Yahira 2005 ki :
iahira 2005 @il com, Eahimavwmaralitmpmaul com, "haladeepa8 Stpmail.com

Abstract:

‘ In {lllN paper, we introduce the concept of Edge domination on anti fuzzy graph.
The edpe !l!lllllll.l“ll}:‘_ sel, isolated edges and independent edge set on anti fuzzy graph are
delined. We t_ll.'lcrlmnc the edge domination number y'(A) on anti fuzzy graph. Some
theorems are discussed and suitable examples are given.

Keywords:

Anti fuzzy graph, cdge dominating set, isolated edges and independent edge sel.

Introduction:

Fuzzy graph theory was introduced by Azricl Rosenfeld in 1975, R.Seethalakshmi
and R.B.Gnanajothi introduced the definition of anti fuzzy graph. R.Muthuraj and A Sasirckha
defined some types of anti fuzzy graph. The study of dominating sets in graphs was started by
Orc and Berge. A.Somasundram and S.Somasundaram [6] discussed  domination in fuzzy
graphs. R.Muthuraj and A.Sasirckha also defined domination on anti fuzzy graph in
2018[3].We discuss the edge dominating set, isolated edges and independent edge set on anti
fuzzy praph and determine the edge domination number ¥’ (1) on anti fuzzy graph.

L. Preliminaries:
L1 Definition:

An anti fuzzy graph o = (o,p) is a pair of functions @:V-[0,1] and p:V x
V [0, 1] with p(u,v) = o(u) V a(v) for all u,v in V where V is a finite non empty sct and V
denote maximum.

1.2 Definition: "
An anti fuzzy graph A = (o, p) is said to be strong if p(u,v) = a(u) V a(v) forall
(uv)inki

1.3 Definition:

Let A = (o, p) be an anti fuzzy graph. A set S S E is said to be an Edge Dominating
Set(EDS) in A for every edge in X-S is adjacent to atleast one effective edge in 8.

An edge dominating set S is called the minimal edge dominating set if no proper
subset $* of S is a dominating set.

The maximum fuzzy cordinality of minimal cdge dominating set is called edge
domination number of 4 and it is denoted by ¥'(A ). (Le)lSla = Ee ¢ pu(e).
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ABSTRACT

A set of vertices in a graph G(V,E) is called a dominating set if every vertex in V(G)-S is
adjacent to some vertex in S. A dominating set S is called a total dominating set if S has no
isolated vertex. The minimum cardinality of a total dominating set is called the total
domination number and denoted by y,(G). A total domination polynomial of a graph G of
order n is the polynomial Dyy(G, x) = Z?’im © dea(G, 1) xt where dyq(G, t) is the number of

total dominating sets of G of cardinality t. In this paper we determine the total domination
polynomial on some special graphs.

Keywords: total dominating set, total domination number, total domination polynomial.

AMS Subject Classification: 05C72
1. Introduction

All graphs considered here are finite, undirected without loops and multiple edges. Let G =
(V, E) be a graph. A set of vertices in a graph is called a dominating set of G if every vertex
in V — D is adjacent to some vertex in D. The domination number y(G) of G is the minimum
cardinality of a dominating set in G. A set D of vertices in G is a total dominating set of G if
every vertex of G is adjacent to some vertex in D. The total domination number y,(G) is the
minimum cardinality of total dominating set of G.Total domination in graphs was
introduced by Cockayne et al. [3]. A domination polynomial of a graph G is the
polynomial D(G,x) = Xty d(G. t)xt, where d(G,t) is number of dominating sets of
G of cardinality t. Domination polynomial was initiated by Arocha et al.[1]. B.
Chaluvaraju and V. Chaitra [2] defined the total domination polynomial as follows: A
total domination polynomial of a graph G of order n is the polynomial Dq(G,x) =
Z¥ace) dea (G, t)xt, where d4(G,t) is the number of total dominating sets of G of
cardinality t. Let B, be a path with n vertices. The comb graph is defined as B, ® K;. It has
2n vertices and 2n — 1 edges. The n-sunlet graph is the graph on 2n vertices obtained by
attaching n pendant edges to a cycle Cp(ie) the coronas C,, © K;. The helm graph H,is the
graph obtained from an n- wheel graph by adjoining a pendant edge at each node of the cycle.
Web graph is defined as the stacked prism graph with the edge of the cycle. The Friendship
graph F, can be defined by joining n copies of the cycle graph C,, with a common vertex. (ie)

The Friendship graph F, is one point union of n copies of cycle C,. In this paper we
determine the total domination polynomial for some special graphs.
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Gd-distance of Certain Product Graphs
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ABSTRACT. In this paper, we determine the Gd-distance of G*Kyyryry., 404
GBRKygry...7m—y, Where X and [ denote the tensor product and strong product of graphs,
respectively, and Ky ., . denotes the complete n-partite graph with partitc scts

Vo,V1s s Vn—1 where lVII =1m,0<j<n-—1landn=>3.
Keywords. Gd-distance, Tensor product, Strong product, Wicner index, Zagreb index.

1. INTRODUCTION
A graph G is a pair (V(G),E(G)) of sets, called the vertex set and edge set. Let G be a

connected graph of order n. For vertices a,b€EV(G), the distance between a and b in G,
denoted by dg(a,b), is the length of a shortest or geodesic (a,b)-path in G. Let
dg(b) denotes the degree of the vertex beEV(G). The length of a geodesic path is called
geodesic distance or shortest distance. The number of edges of G is denoted as €(G).
Definition 1.1.[11] For any two simple graphs G and H, the tensor product of G and H has
vertex set V(GxH)= V(G)xV(H), edge set E(GxH)={(a,b)(c,d)/ac € E(G) and
bd € E(H)}.
Definition 1.2.[12] The Strong product GIJH of graphs G and H has the vertex sct
V(GEH) = V(G)xV(H) and (a,x)(b,y) is an edge of GIXH if

(i) a=b and xy € E(H), or

(i) ab € E(G) and x =Yy, or

(iii)  ab € E(G) and xy € E(H).
Definition 1.3. The Wiener index, introduced by Harry Wiener, is the first distance based
topological index defined as

W(G) = Z(ap)ev(e) de(a b) = %Za.bev(c) dg(a,b).
Definition 1.4. The first Zagreb index M, (G) of a graph G is defincd as
My (G) = Tavescede(@) + dg(b)].

Definition 1.5.[6] If a,b are vertices of a connected graph G, Gd-length of a a-b path is
defined as d%4(a, b) = d(a, b) + deg(a) + deg(b).
Definition 1.6.[7] If G is a connected graph with vertex set V(G), then the
Gd-distance of G is defined as d¥(G) = Z(ancv(c)ld(@ b) + dega -+ deg b].
Lemma 1.7. Let G be a nontrivial connected graph. Let Zyy and Z,, be two blocks in

H = GxK. Then
(a) d,,(zu,z,q) = {ZU(T/ -1), ifj=a

2nry, ifj#*aq
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Abstract:

the notion of generalized pseudo commutative '-near subtraction semigroups. We sho
pseudo commutative ['-near subtraction semigroup is zero-
properties of pseudo commutative [-near subtraction semigroups and some equivalen
on pseudo commutative [-near subtraction semigroups.

Keywords:

Non-zero nilpotent, regular, left unital, ri
central, strongly regular, zero-symmetric.
1.Introduction

[-near subtraction semigroup Wwas ini
terminology in near subtraction semigroup,
semigroup, we refer to Dr.S.J.Alandkar|
pseudo commutative [-near su
pseudo commutative [-near-ring.
2.Preliminaries
Definition 2.1 A '-near subtraction semigroup is a triple (X
empty set of binary operators on X, sut
T. In practice, we called simply I'-near-
semigroup. Similarly we can define a [-near- subtraction semigroup(left).
Definition 2.2 Let X and Y be two I-
I'- near subtraction semigroup homomorphism if i)
alla,be X, yel
Definition 2.3X,= {x€ X/xy0=
zero-symmetric, if X = Xo-
Definition 2.4 An element 0 # 2 €
that (ay)"a = 0 foreachY € F.
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In analogy with the concept of generalized pseudo commutative [-near-rings, We introduce
w that every

symmetric. Further we obtain the
t conditions

ght unital, pseudo commutative, idempotent,

troduced by Dr. S. J. Alandkar[2]. For basic
we refer to Dheena[3] and for I'-near subtraction
2]. In this paper we introduce the notion of generalized
btraction semigroups by admiring the concepts of generalized

,— ), for all ye T', where I is a non-
ch that (X, — ¥) is a near-subtraction semigroup for all ye
subtraction semigroup instead of right I"-near- subtraction

near subtraction semigroups. A map f: X—Y is said to be
fla — b) = f(a) — f{b) ii) flayb) = f(a)yf(b) for

0 for all ye I'} is called the zero-symmetric part of X. X is called

X is called nilpotent if there exists a positive integern = 1 such
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Abstract:

In analogy with the concept of generalized medial I'-near-rings, we introduce the notion
of generalized medial I'-near subtraction semigroups. We show that the homomorphic image
ofgeneralized medial I'-near subtraction semigroup is again a generalized medial I'-near
subtraction semigroup Further we have studied the properties of regular generalized medial I'-
near subtraction semigroup.

Keywords:

Non-zero nilpotent, regular, left unital,leftpermutable, right permutable, zero-symmetric,
regular generalized mediall-near subtraction semigroup, prime, completely prime, maximal
ideal.
1.Introduction

I-near subtraction semigroup was introduced by Dr. S. J. Alandkar{2]. For basic
terminology in near subtraction semigroup, we refer to Dheena[3] and for I"-near subtraction
semigroup, we refer to Dr.S.J.Alandkar{2]. In this paper we introduce the notion of generalized
medial T-near subtraction semigroups by admiring the concepts of generalized medial I'-near-
ring.
2.Preliminaries
Definition 2.1 A I'-near subtraction semigroup is a triple (X, —, y), for all ye ', where I' is a non-
empty set of binary operators on X, such that X, Y)_ isa neaf-subtrai:non semigroup for all ye
I. In practice, we called simply I'-near- subtraction semlgr-oup m.stead of right I'-near-
subtraction semigroup. Similarly we can define a I'-near- sut.mractxon semigroup(left).

Definition 2.2 Let X and Y be two I'- near subtraction semigroups. A map f: X—Y is said to be
I'- near subtraction semigroup homomorphism if i)f(a — b) = f(a) — f{b) ii) flayb) = f(a)yf(b) for
alla,be X,yell )

Definition 2.3X,= {x€ X/ xy0 = 0 for all ye I'} is called the zero-symmetric part of X. X is
called zero-symmetric, if X = Xo- ' ) )

Definition 2.4An element 0#a EX is called nilpotent if there exists a positive integer n > 1 such
that (ay)"a = 0 foreach y €T. ) )

Proposition 2.5X has no non-zero nilpotent elements if and only if aya= 0 implies a = for all
verl.
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FUZZY p* CONVERGENCE OF GENERALIZED FILTER
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Abstract: In this paper, we introduce B* Convergence of Filter (Generalized filter) p* Convergence
of Fuzzy filter (Fuzzy Generalized Filter) and study various properties.

Keywords: p* Convergence of filter, B* convergence of generalized filter, Fuzzy p* convergence of
fuzzy filter, Fuzzy B* convergence of fuzzy generalized filter.

1. Introduction: In 1965, L.A.Zadeh introduced fuzzy sets. In 1968, C.L.Chang introduced fuzzy
topological space. In 2011 S.Palaniammal and others introduced generalized filter and convergence
of generalized filters. In 2014, myself and others introduced fuzzy filter and convergence of fuzzy

filter.

In the year 1983, M.E.Abd El-Monsef, S.N.El-Deeb and R.A.Ma'hmoud introduced fhe. fcf(;\ncceptl o.f E
open set in topological space. A subset A of a topological spac.e is called.[} open set 1'f 1l Cc Iglm
(cl A)). In 2020, myself introduced the concept of B* open set in generahfed topologica ?pgxz

this paper I introduce the concept of p* convergence of filter and fuzzy B* convergence o y

filter.

2.Preliminaries: ) . 2
Definition2.1:Filter: Let X be a non empty set. F cP(X) is called a Filter on X ifl.®P&F;2.Fis

. eF.
closed under finite intersection. 3. A € F and AcB=B

Definition2.2: Generalized Filter (GF): Let X be a non empty set. F cP(X) is called a generalized
efinition2.2:

filter if 1. ® & F; 2. A € Fand Ac B=BEF. )
Let (X, T) bea topological space and F be a Filter on X. F is

- ” Filter:
Definition2.3: Convergence of Fi 11 neighbourhoods of a.

said to converge to a € X, if F contains 2 )
lized Filter: Let X be a topological space and F be a

a
Definition2.4: Convergence of Gener: —— X, if F contains all neighbourhoods of a.

Generalized Filter on X. F is said to conV: 3
Let X be a non empty set. A fuzzy set. F: P(X) — [0,1] is called

Definition2.5: Fuzzy Filter: AB) > min{F(A), F(B)} 3. A © B= F(A) <F(B).

Fuzzy Filter if 1. F(®) =0; 2. F(A

Definition2.6: Fuzzy Generalized F;"d))
called Fuzzy Generalized Filter if 1. (

er: Let X be anon empty set. A fuzzy set F:P(X) — [0,1] is
=0;2.AcB =F(A) <F(B).
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ABSTRACT

In the year 2002, A.Csaszar introduced the concept of Generalized Topology [1]. In the year 1963,
N.Levine introduced the concept of semi open sets [2] in a topological space. In the year 1983, Abd
El-Monsel’ MLE., EI-Deeb S.N. and Mahmoud R.A. introduced the concepts of B open sets [3] in a
twpological space. In this paper S* closed sets, B* closed sets and B*S* closed sets are introduced
and properties are studied.

KEYWORDS: S* closed sets, B* closed sets and B*S* closed sets

L.LPRELIMINARIES:

Definition 1.1: Generalized Topology

Let X be a non empty set. Let p € P(X). p is called a generalized topology on X if 1. ®€Ep

2. pis closed under arbitrary union. Elements of p are called p open sets or simple open sets. The
interior ol a set A is denoted by i(A).

Definition 1.2: Semi open set

A set ACX is called a semi open set if Accl int A.

let ACX. The union of all semi open sets contained in A is called semi interior of A and it is
denoted by is(A). is(A)=U {B/B is semi open and BCA}

Definition 1.3: 3 open set )
A set ACX is called a p open set if A € cl int cl A.Let AcX. The union of all Bopen sets contained

in A is called B interior of A and it denoted by ip(A).
Result 1.4: A is open=> A is semi open = A is B open
2.NEW TYPES OF CLOSED SETS:

Definition 2.1:S* Closed Set ) N ) .
i et X be a generalized topological space. Let A cX. A is called a S* closed set if for every semi

. = 1 1
closed set B containing A, there exists a closed set B! such that A cB'cB. 1
i) ACB, B is semiclosed implies thereexistsB' a closed set such that A cB'cB.

Definition 2.2: B* closed set . ‘
Let X'be a gcnc?alizcd topological space. Let AcX. A is called a B* closed set if for every B closed
d set B! such that ACB'cB.

set B containing A, there exists a close |

ic) AcB, B is 3 closed implies there exists B! a closed set such that ACB'cB.

Definition 2.3: B*S* closed set ) .

Let X be a gen(':ralizcd topological space. Let ACX. A is called a B*S* closed set if for every B
D - ;

closed set B containing A, there exists a semi closed Sftt B' such that AcB'cB.

i) ACB, B is § closed implics there exists a B! a semi closed set such that AcB'cB,

Example 2.4:X={a, b. ¢} T={®. X}
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Abstract: ) .
In this article we introduce the concept of total matrix andtotal energy of a gr aph G.

Let G- (V1) be a (p,q) simple graph. Let V(G) = (vy/i = 1,2,...p} and £(G) = {ec/f, =
1.2,..q}. The total matrix T = T(G) of G is a squarc matrix of order pt+q whose (i,j)"entry 15
1 ifvadjacenttovy,i # j
1 ifeqadjacenttoe;, | # |
Jfined as: T = (tyy) =
defined as: T = (ty) 1 ejincidentwithy
0 otherwise

The Total Energy of a graph is the sum of absolute value of the cigen values of its
Total matrix T'(G). For any (p,q) graph G, the total number of cigen valuc is ptq.

Let Ay, A2, A3, ... Apsq be the cigen values of T. Then, total cnergy of Gis TE =
$P9)2,). Further, here we write algorithms and MATLAB programs to find the total energy

of some simple graphs.

Key Words: Total Energy, Path, Star, Yp41& Bull Graph.
AMS Subject Classification:05C50

I. Introduction: ) .
Throughout this article we deal with finite, simple and undirected graphs. The concept

of energy of a graph was proposed by Gutman [7) in 1978 as the sum of absolute values of
the cigen value of a graph G and is denoted by E(G). The eigen values of the total matrix T is

known as the total eigen values of G. We find the total energy for Path, Star, ¥y, ;& Bull

Graph.

1.2 Definition Let A1, 12,3, - Ap+q be the total eigen values of T. Then the spectrum of G

i Maz25 - pra }whercm is the algebraic multiplicity of the total eigen
= {

IsSpecr(6) {m1mzm3 «Mpiq

values A;, for1 <i<p+4q.

1.3 Definition The total graphT (G) of a gra

(G) corresponds to the vertices and edges of G
and only if their corresponding elements are eith

ph G is a graph such that (i) the vertex sct of T
and (ii) two vertices are adjacent in T (G) if
er adjacent or incident in G.

IL. Total Matrix and Total Energy of a graph

2.1 Definition The total matrix T = T(G) of G is a square matrix of order p+q whose

(i)"entry is defined as:

|
22
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\BSTRACT: . s e

& ='(V,A) be a ch.graph. An injective function f: V(D) - (1,2, ....p} is said to bc a
ian pairity dxfferenlce gz;n'fd(lal) lab;_len% if 31e induced arc labeling f*: A(D) — {0,1} defincd
S _ i u) — f(v) > 5

by f(C v)).— { 0 elsewhere satisfies the condition that |e,(0) — e, (1)| < 1
where, e(0) is the number of arcs with lab.el 0 and ef(1) is the number of arcs with label 1.
In this paper, We analyze_ the existence of sign pairity difference cordial labeling in digraphs
obtained from the underlined graphs Fan, Double Fan, Triangular Snake, Double Triangular
Snake, Subdivided Star and Broken Comb.

Keywords: Sign Pairity Difference Cordial Labeling
AMS Subject Classification: 05C78

1 INTRODUCTION:
A directed graph or digraph D consists of a finite set V of vertices(points) and a

collection of ordered pairs of distinct vertices. Any such pair (u,v) is called an arc or
directed line and will usually be denoted by uw. The arc uv goes from u to v and incident
with u and v, we also say u is adjacent to v and v is adjacent from u. A digraph D with p
vertices and q arcs is denoted by D (p, q). The indegree d~(v) of a vertex v in a digraph D is
the number of arcs having v as its terminal vertex. The outdegree d*(v) ofv is the number
of arcs having v as its initial vertex[5]. A labeling of a graph G is an assignment of integers to
cither the vertices or the edges or both subject to certain conditions. K.Palani et.al[8]
introduced the sign pairity difference cordial labeling in digraphs. In this paper, we find the
existence of sign pairity difference cordial labeling in digraphs obtained from the different
underlined graphs.

L1 Definition[8]: Let D = (V, A) be a digraph. An injective function f:V(D) — {1,2, ....p}
jal labeling if the induced arc labeling

is said to be a sign pairity difference cord

s 1 if fW—f@>0 . -
f:A(D) - (0,1} defined by f*((wv) ={ ffelsewhere_ LR e Sanditicn
that |e, (0) — er(1)| < 1 where, (0) is the number of arcs with label 0 and e(1) is the

Number of arcs with label 1.

2MAIN RESULTS:

ined from Fan(P, + K;) by orienting its edges as in

2
Fi o' orems Let D, be the digraph obta ial labeling.

Plr& 2.1. Then, D, admits sign pairity difference cord
le:)(l’/f: Let D, be the digraph as in Fig. 2.1
@) = {ug, up, ug ... up}

1
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Abstract:

Let G=(V 3E) bea simpl.e graph with p vertices and q edges.For a connected graph G of
giameter d, a radio mf?:;}_?‘(’;hng Is a one to one mapping f from V(G) to N satisfying the
condition d(u, v) + [—2 ] 2 1+ diam(G) for every u, v € V(G).The span of a labeling_ f
s the maximum integer that f maps to a vertex of G. The radio mean number of G, rmn(G) is

the lowest span taken over all radio mean labelings of the graph G. In this paper, we analyze
some inflated graphs for radio mean labeling.

Keywords: Radio Mean, Radio Mean Number, Radio Mean Labeling.
AMS Subject Classification: 05C78.
Introduction: ‘ '
- The graph labeling problem is one of the recent developing area in graph theory.Ale;
Rosa first introduced this problem in 1967[8]. Radio labeling is motivated by ﬂ;e ﬁimd -
assignment problem introduced by W. K. Hale in 1980[3].In 2001, (‘ia(xjry tfhaﬂ:;d nﬁm bi e
f radio labeling of G[1].Liu and Zh\f first deten}un e ; "
;8305?5; P?)nraj et al.[6] introduced the notion of radio mean labeling of graphs and investigated
radio mean number of some graphs [7]. .
i i theory, network security,
i i ed for X-ray, crystallography, coding the uri
l?:gld(ie:saiz;hzlgza:;;sassignmem process, social network analysis such as connectivity,
tworl 3 e !
Islsalability, routing, computing ,cell biology etc.,

The following results are used in the subsequent section.

i i rtices and g edges.Fora connected
= - — be a simple graph with p vel | ooy
i Deﬁmtlo'n- o Gd (:Ifgio mean labeling is a one to one mapping f from ((S)] S o
T [ﬁﬁi&’l > 1 + diam(G) forevery i, v € V(G).The sp:
M M A nr - f mapstoa vertex of G.The radio mean nuu}ber of
a labeling f is the maximum integer that anlabelings of the graph G.In this paper, we
G, rmn(G) is the lowest sp

an taken over all radic; me
analyze some inflated graphs for radio mean labeling. T— o
o 1 i f the
= tomofs R © en two vertices O
1.2 Definition|[2]: The Il;{ﬂitl;(’n (oL el i e i beftvge i o
ceamosdi by? Chqu)e( an; yf)(; )G, in such a way that the edges o U1
corresponding cliques & ¢
g orer the path P, by appending an edge to a
y-tree Yn+1152 graph obtained from
1.3Definition[5]: A Y-treé Xn+ s
vertex of the path P, adjacent to a2 end po
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NEAR MEAN LABELING IN DIRECTED DOUBLE CYCLES
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Abstract:

Let D(p,q) be a digraph. Let f:V — {0,1,2,...,q} be a 1-1 map. Define f*:A—
(1,2,...q0by (e =) = [(LOUO] 1ot f£2() = |Suer f*@W) = Zwev [ @O 1
fflv)<2Vve A(D), then f is said to be a near mean labeling of D and D is said to be a
near mean digraph. In this paper, we define double cycles in digraphs and investigated the
existence of near mean labeling in them.

Keywords: Near mean labeling, Digraphs, DirectedDouble cycles
AMS Subject Classification: 05C78.

1. Introduction: ) )
A graph labeling is an assignment of integers to the vertices or edges or both subject
t of graph labeling was introduced by Rosa in 1967 [6]. A

to certain conditions. The concep '
useful survey on graph labeling by J.A. Gallian (2014) can be found in [l].. Somasundaram
and Ponraj [5] have introduced the notion of mean labeling of graphs. A directed graph or

di h D consists of a finite set V of vertices and a collection of ordered pairs of distinct
v:triacis Any such pair (&, v) is called an arc or directed line and will usually be denoted by

gree v i i is the number of arcs having v as its
The i d of a vertex v in a digraph D is : having

:‘m"' inaclli‘::lex Thc( o?ndcgree d*(v) of v is the number of arcs having v as its initial vertex
e ’ )

2 A is
i i ts of mean and near mean digraphs in [4]. In thi

[2]. K. Palani et.al. mtrod.uCcd the concep - B

paper, the definition of Direct oduced an ear mean

ed double cycles is intr
labeling is investigated. o
The following definition and theorem are from [3] and [4]
be two disjoint cycles with u € V(Cm)and v € V(Cp). The
ed by identifying uand v.
near mean digraph.

1.1 Definition:Let Cp, and Ca ;
louble cycle C(m, n)is the graph (11_1_12.!"1
1.2 Theorem: The directed cycle Cn 1523

2. Main Results: n), orient the edges of each cycle clockwise, the

c(m,

21 D ition: In double cycle e - ‘ s

l .eﬁmnonh - called directed double cycle and it s denoted as C(m,n). Any

resulting graph 1s ed e

im,m)contains m +n — 1 vertices and m + 1t edges
i ig = >3

22 Th Directed double cycle c(m,n)isa near mean digraph forallm = 3 and n

2.2 Theorem: Directe
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Abstracts

Pet 6 (VL E) bea (pg)-poaph. An imgective fum won [V s (L2048 ,p b oq) s smd

W be a prime pair - labeling, i lor evary  vertex v e V(G)  with  d(v) - 1,

VIS AN y)) - LV oy € N A graph which adonts prome paie labeling s called o prme
.I‘““ praph. In this paper, we survey the existence of prime pair labeling of variows graphe
Keywords: | abeling, Prime pair labeling, Graphs,

AMS Subject Classifieation: 05C78,

Lintroduction: _ ' ' —
Graphs we consider here are simple, linite, connected and undirected. For bi
waphs > s

f i % i 5] introduced the
lefiniti | notations in graph theory we follow Harary [1]. K. Palani ctal [5]
delinitions and 1 s

is paper, we the existence of prime pair
{ of prime pair labeling of graphs. In this paper, we survey I I
concept ol prime pair 1

B o facts are from [5].
labeling of various graphs. I'he following fact

P oy o] Vo (1,23, ....p v q)
N N R Lqq)-graph. An injective function / ) .

1.1 Definition : Let G = (V) E) hb|“|('|,il::¢) u"_ for every verlex v € V(G) with d(v) -~ 1,
abe "

is said to be a prime par (o)A praph which admits prime pair labeling is called a prime
v).

ged(f (), fy)) = 1¥xy EN

pair praph. A . e AT

1.2 Theorem : The path P 1% Pm:““O'K | is prime pair. ;
1.3 Theorem : The comb groph fi yrem: 11(x) — 1 (f) 2 1Bl H2 2 whem wix) ks
- - cC "

hev th
= . nergrand-cheby® . an or equal to x).
L4 Theorem|2): n(_r(m. i primes less than or e
) . tiot
the prime counting func

. The H-prap

th Py is the graph obtained from two copics of F,, with
sath Fu ¥ Z : :
holal by joining the vertices Ihn_;_g and u%g by an edge if nis

L5 Definition [4] uzg o 0 .
Vcn:c::i:i Sl and U1’ ‘-rn is even. We denote this graph as HF,.
S Vy, V2. i 2 3 4 ’
@ | the vertices vny ™ uy 1. corona product GO is obtained by taking onc copy of
odd and C 2 '

FoK grap w O n'. /1 and joining, cach vertex of i copy of graph H to the ith
3): For & ¢ graph
1.6 Definition | es of ¥

4 vl ,
wraph G and v (&) 512 !, in dofined by Ly = Py % Ky, the cartesian product of £,
vertex of the L'-n",h. ’/; jadder ¥

1.7 Definition 1©

and K. |l-}'-"'"" of o path 5, is prime pair,
2. Manin ResUE e g

2.1 ‘Theoren™
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Abstract :

bet 6 = (V. E) be a graph. An injectye e
labeling of G, if the induced function f+ . g _, ;n
Zumkeller number for all xyeE, x,y ey A graph G =
called a Zumkeller graph. In (hjs paper
;plitting graphs.

iV > N s said to be a Zumkeller
defined as Fey) = f)f(y) is a
(V. E) that admits Zumkeller labeling is

Keywords: Graphs, Splitting graphs, Labeling, Zumkeller numbers
AMS Subject Classification: 05C78,

Introduction: The classes of labeled graphs can be identified through graph labeling, an
inferesting and potential research area of discrete mathematics, The collection of various graph
labeling can be found in [1]. The graph labeled with Zumkeller numbers[2], a recent
development in graph labeling, are potential area of research. In this paper, we analyse the
existence of Zumkeller labeling [3]in splitting graphs [4]. The following results are useful for
reference.

L1 Definition: A positive integer n is said to be a Zumkeller number if all the positive factors of
"t can be partitioned into two disjoint parts so that the sum of the two parts is equal.
We shall call such partition as Zumkeller partition.

1.2 Properties of Zumkeller numbers:
(3) Let the prime factorization of an even Zumkeller
#llcast one of k; must be an odd number.

®) Let p be a prime number of the form P

e integer n
" <+ < 1 for some . The positive intcg
"
]

number n be 2¥p,*ap %2 L py*m. Then

1420+ 2420+ + 2" wherery <13 <
e 2% isa Zumkeller number if and only if @ =

ny pos i cller number
a 1S a Zu
" ' be! d P isa prime Wilh (l'l. p) 1, then P Zumk
i ller number an n
: )ipi““lict +2 . d k with P <2 1-1,2 p isaZ umkeller number.
| 14 and a p()s' ive in cgcr = Z
) . ) N Obl:lil'lﬂl by nddmg to each vertex v, a
S

the graph Gi

w s adjacent to V in G. In otherwords,
X
every verte:

'3 Definition: The splitting graph Of hich i

co i to
"“Wyertex v’ such that v’ is adjacent
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A STUDY ON Bs NEAR RING
D.Radha', V.Ananthi?

! Assist d Research Department of Mathematics,
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.SC (Mathematics)

Fatima College, Madurai.

ABSTRACT

n this paper we have introduced the concept of Bs near ring. Also some basic structures with
respect tO commutativity is established. Every weak commutative near rings is satisfying the
property of Ps near rings. Homomorphism preserves the property of Ps in near rings. The
quotient ring N/1 is also a Bs near ring whenever N is a Bs near ring where I is any ideal of N.
The property of mate function is true in a Bs near ring if and only if whenever x€ x* N. Also,
it is proved that, a zero symmetric Bs near ring with mate function have (*, IFP) and the set of
all idempotents is always contained in its centre.

KEYWORDS
[FP near ring, Mate function, Near ring, Weak commutativity,Zero-symmetric near ring.

LINTRODUCTION:

Near rings can be thought of as generalized rings: if in a ring we ignore the commutativity of
addition and one distributive law, we get a near ring. Taussky [15] in 1936 and B. H.
Neumann [4] in 1940 considered near rings in which addition need not be commutative.
Since then the theory of near rings has been developed much. Later Frolich [1], Beidleman
[11], Oswald [2] and many other researchers had done and have been doing extensive work
on different aspects of near rings. Gunter Pilz [10] “Near rings” is an extensive collection of
the work done in the area of near rings. In this paper we defined the concept of Bsnear ring.

2.PRELIMINARIES

Definition 2.1 A right near ring (N,+, .) is a non-empty set together with two binary
operations ‘+’ and ‘.’ such that

1) (N,+) is a group (not necessarily abelian).

1i) (N, .) is a semi group.

ili)  Forany x,y and zin N, (x+y)z = Xz + yZ.
Definition 2.2 No= {n € N/ n0 =0} is called the zero-symmetric part of N and N is called
zero symmetric if N = No.
Definition 2.3 N is said to be weak commutative if Xyz = xzy for every x,y and z € N.

Definition 2.4 Let N, N! be two near rings. Then h : N — N' is called a near ring
homomorphism if for every m andn € N,

l) h(m+n) = h(m) + h(n).
i) h(mn) = h(m) h(n).
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# On Some Characterizations of R-Near Rings
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2Research Scholar
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ABSTRACT — proved
: i d e more results on R-Near Ring. We have

In this paper we have discussed som T trone [FP and 50 01 &

i - 1 ing the concept ofidempotency,
erties of R-Near ring using . e
e preort)heorem for R-Near ring has been proved. That is any'horfxomorphxcf:_ };I?Near s
Sﬂcn}l{rino ;s also a R-Near Ring. The characterization of a, near ring 10 tern}:;s o e oo
Ne:rB olaean near rings has been discussed. We have also proved every R-Near
O 0 - -
:;mmetric If N is reduced R-Near ring then N is commutative.
i i divisors.
Keywords: Boolean, Commutative, P, near rnng, Regular, Simple, Zero
1.Introduction
Near rings can be thought of as generalized nn%s: e
commutativity of addition and one distributive layv, we ge :fnear ,-in:s.
Rines” is an extensive collection of the work done 11 the area g
E=3

if in a ring we ignore the
Gunter Pilz “Near

i ing (N,+,), with at least two

N stands for a right near ring . ‘
v element of the group (N,+) and we f;v.nte xy for x.y
o —0foralln €N. If, in addition, n0 = 0 for
T A of N, we denote A" the set

Throughout this paper
clements and ‘0° denotes the ide

jously On
for any two elements x,y of N. Olz,v:;mtzetdc. For any subset

allnENthenweSaythatNiszer. +=N—{0}
of all non zero elements of A. In pamculal‘ N

2 Preliminaries

i in N — {0} there exists x in N —
Definiti Let N be a right near ring. If for tavery ain
E s =3 an @, near ring.

{0} such that x = xax then we say N i

€ N is called 2 right zero divisor if there exists 0 #
# X

Definition 2.2 [5] An element 0
2 & N such that ax = 0.

N is called 2 left zero divisor if there exists 0 = a €
e N is

Definition 2.3 [5] An element 0 # X
Such that xa = 0.

Jement that is either a left (or) right zero divisor.
e

Definiti divisor is an €
on 2.4 [5] A zero o conita EF iffa = a).

g set of all idempoten |
on 2.5 [1] E denotes the tion of Factors property (IFP) provided that
Inser

Definition 2.6 [3] N is said to fulfill the
“alla,b,n in N, ab = 0 = anb = 0-
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A Study on the Sub-Structure of a Seminear Ring
) 'D. Ra *K. Muthu Maheswari .
1 Assistant Professor, College for Women, Thoothukudi.
2 Assistant Professor, Govindammal Aditanar College for Women, Tiruchendur.
3Thoothukudi.
Abstract: In this paper we introduce the concept of stable and pseudo stable seminear nngs
Motivation for this concept actually stems from stable and pseudo stable near rings. It is quite

patural for us to extend the concepts of stable and pseudo stable near rings to seminear ﬁngst-_
The propelﬁes of stable and pseudo stable seminear rings are discussed using the concepts C;z
idempotent, Insertion of Factors Property (IFP), mate function and so on. We also show that

is a stable seminear ring if and only if E S C(R) and any homomorphic image of a stable
seminear ring is a stable seminear ring. We show that any pseudo stable seminear ring R has (*
,IFP) also. We also obtain some structure theorems for such seminear rings.

Keywords: Seminear rings, Stable and pseudo stable near rings, Mate function, Mutual mate
function, Insertion of factors property.

1. Introduction

Willy. G. Van Hoom and B. Van Rootselaar [11] introduced the notion of a seminearring
which is a generalization of a semiring and nearring. S. Suryanarayanan and N. Ganesan [10]
worked in the field of mate function in nearrings. G. Manikandan [1] and R. Perumal [1] worked
in the field of mate function in seminearrings and obtained many more properties of mate
functions. In [10] S. Suryanarayanan and N. Ganesan have defined N to be stable if xN =
xNx = Nx for every x in N and pseudo stable if aN = bN = Na = Nb for all a,b in N.
Motivated by this, we introduce the concept of stable and pseudo stable seminear rings. In this
paper, we discuss the properties of stable and pseudo stable seminear rings. In a semiring
(N,+,.) if we ignore commutativity of addition and one distributive law, (N,+,.) is a
seminearring. Throughout this paper, by a seminear ring we mean a right seminear ring with an
absorbing zero.

2. Preliminaries

Definition 2.1 A seminear ring is a non-empty set R with two binary operations + and . such
that

@) (R, +) is a semigroup

(ii) (R,.) is a semigroup

(i) (x+y)a=xa+yaforalaxy€R.

Definition 2.2 A seminear ring R is said to have an absorbing zero if
(‘) a+0=04+a=a
(i) a.0 = 0.a = 0, holds forall a € R.
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Abstract

The concept o .
oncept of K ~domination in graphs was introduced by Fink and Jacobson A &-
lommating set 1s a set of vertices D such that ¢

®» Sgoe A

; ach vertex in V(G) - D is dominated by at
kvernicesin D for a fixed positive integer k.

The minimum cardinality of a k-dominating set 15
called A -domination number ¥x(G). In this P

aper, we commence the study on & —domunanon of
cro-divisor graphs and discussed some theorems of all these structures in detail
Reywords &k —domination, zero-divisor graph

L. Introduction

T'he Mathematical study of Domination theory in graphs started around 1900 C Rerge

der vy
Ihe notation (G) was first used by EJ. Cockayne and S.T. Hedetmienu for the domumanon
nuwnber of a graph whichsubsequently became the accepted notation. The wdea of 2 sere divser
graph was introduced by I. Beck in 1988. In a later vanant studied by Anderson & Uivangsion o
1999 that the vertices represent only the zero divisors of the given nng and o s denorad
L(R).A zero-divisor graph is an undirected graph u'pur‘fcnhng the zerv-divisors of a commutatve
ced k —domination of zewo-divisor graphs and inestigate some

wrote a book on graph theory in which he defined the concept of the donmunation nu

g R. In this paper, we introdu
theorems extensively.

1. Preliminaries

Definition: 2.1 [4] A dominating st for a graph G =.(V. P: s ;\ subset 1 ot L".\\.-.;?-. '.‘.-..-.\: .-\-.-"\
vertex not in D is adjacent to atleast one mcn}hcr.ul D. The dommanon numbes » () s the
number of vertices in a smallest dominating set for G.

Definition: 2.2 [4] Given a ring R, let 2°(R) denote the set of zero-divivors o R Lot IR

denote the zero-divisor graph whose vertex set 18 Z'(R),
adjacent provided that rs = 0.

such that distinet vertices + amd s an

sel is a set of vertices D such that each vertex wn Vi)Y - Dy

fixed positive integer K. The mintmum candinaliny of a
ber yi(G).

Definition: 2.3 [5) A k-dominating

ces in D fora
domunated by at least k vertices 1f D

ination num
k-domunating set is called k-dominati
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Abstract

the concept of fuzzy set was introduced by Zadeh. R Rajeswan, M Arica anc
\ Meenakumani have introduced the notion of Intuitionistic Fuzzy bi-ideals in Baolean lis semm
nngs In this paper, we extend this notion into Intuitionistic Fuzzy Weak bi-ideals = Booiean

ke ser rings. We discuss the results of all these newly structures in detail We also comm
wme characterisations and complete theorems for Boolean like semi rings.

heywords: Intuitionistic fuzzy set, Intuitionistic fuzzy bi-ideal, Intuitionistc fuzzy weak =-
ieal, Boolean like semi ring.
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e are sum labeling
ABST Rl'\( (l. — (V,E) bea graph with p vertices and q cdgesl. A g':P,:;afhs:l;nducc 4 function
P = N — 1} suc :

{ there :xis-t a bijective function f:v(G) = (0.1.2, . ) (G) is injective. The
] W vls

2 uv € E
o () —» N defined by f7(uv) = (F)? + D) R:,ra:cstrxym labeling. In this paper We
Js ; : is called square sum graph if graph 6 adwnsriq»divisor graphs.
v i :«. how square sum labeling works on certain ze€
mveshigate X
um Labeling.
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In this present paper we have introduced the new approach to soft scts called solt
M -Neighborhoods and soft M -Tangency points and investigated some of their propertics.
This new class of soft sets contributes to widening the scope of soft topological spaces and its
applications.
Key words: Soft sets, Soft topology, Soft M-open sets, soft M-interior,
soft M -Neighborhoods, soft M-Tangency points
AMS Subject Classification(2010): 54A10, 54C08

LINTRODUCTION

Any Research work sh
concept. Such an effort not only
to explore new and newer ideas.
sets called Soft M -open and Soft

ould result in addition to the existing knowledge of a particular
widens the scope of the concept but also encourages others
The researchers have already introduced a new class of soft
M- Closed[5] sets in Soft Topological Spaces.

In 1999 Molodtsov(3] initiated the theory of soft sets as a new mfllhemnticnl 100l for
dealing uncertainty, which is completely a new -appmnch fctr n.10dc.lmg vaguencss fmd
uncertainties. Soft Set Theory has a rich potential .for application |.n _etolv.ng practical

. ics, Social Sciences, Medical Sciences etc. Applications of Soft Set
xblcm.s l‘:hf:‘;?;?:ﬁncs and in real life problems are now catching momentum. Molodtsov

cory in O : ] el
sufcc&?sfully apphedssl::o'g‘::g ;l;us:ﬂions. Game theory, Operations Research, Riemann
d"cc“o?s’ such # tion, Theory of Probability, Theory of Measurement and so on. In
Integration, Perron Imc“gﬂ in : :on of soft topological spaces which are defined
2011, Shabn" s Naz[ ] a fixed set of paramelers. In 2011 Hussain and Ahamed(2]
over an initial unive & - tborhood of a point. In thispaper a newapproach 105(}0 sets
introduced the notion M-Tangency points are introduced and few of their
o led M -Neighborhoods and soft
roperties arc investigated.
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will be needed in the sequel-
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‘:‘: the collection of soll scts ove
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lefinitions and results of soft set theory which

jverse and P be a sct of parameters. Let P(U) denote the
ty subsct of P. A pair (@, P) denoted by a@p is called a

venby a : € — B(W).

power set of U |
¢ o universe U witha fixed parameters P,

soft set over U, W
Definition :2 Let :
then t € SS(Wp 15 €2
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Abstract:

In this paper, we have determined the Gd-distance of the corona product of two graphs.
Using the results obtained. the exact Gd-distance of certain classes of graphs are computed.
Keywords: Gd-distance; Wiener index; Corona product; Path; Cycle; Complete Graph;
Subject Classification: 05C12, 05C76.
1.Introduction

We assume that all graphs considered in this paper are simple and connected.

Let G=(V(G),E(G)) be a connected graph of order n. For any x,y €V(G), the distance between
x and y in G, denoted by dg(x, y) or by d(x,y) , is the length of the shortest (x,y)-path in G.
The degree of a vertex XxeV(G) is denoted by d;(x). Let B,,C,, and S, denote the path, the
cycle and the star on n vertices, correspondingly. The number of edges of G is indicated by
€(G). V.Maheswari et.al ntroduced the idea of Gd-distance between any two vertices in graphs
and also the Gd-distance of a graph [9,10]. In this paper, we obtain the Gd-distance of the
corona product of graphs.
1.1 Definition: The Wiener index W(G) 1s the first distance-based topological index defined

1
as W(G) = Y yiev(e) de(x,¥) = ;Ex.yev(a) dg(x,y).
1.2 Definition: For a connected graph G, the Dd-length of a connected x-y path is defined as
DP%(x,y) = D(x,y) + degx + degy.
1.3 Definition[9]: The Gd-distance of a x-y path is defined as
d%(x,y) = d(x,y)+ degx + degy.
1.4 Definition[10]: The Gd-distance of G, denoted by d?(G) is defined as
d9(6) = Lixyjcve[d(x,y) + degx + degy].

1.5 Definition[6]: The corona product GOH of two graphs G and H is obtained by taking
one copy of G and |V (G)| disjoint copies of H; and then joining the i vertex of G to every
vertex in i copy of H, where 1< i< |V(G)).

1.6 Lemmal11]:

(1) The wiener index of a path graph P,,, wheren > 2 is, W(B,) = %n(n2 = 1).
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